Demonstrates how to generate view and manufacturing information files for the imported model, that can be easily acessed through web interface for downstream analysis.
Overview
The example demonstrates how to create a console application to convert your STEP model to compressed *.mtkweb format, generate useful manufacturing information about it with chosen data processor into *.json file). The model will be imported by ModelData::ModelReader . Then the choosen by input parameter certain part processor class will analyze a model. The list of possible analysis can be found in table below.
Finally, the converted *.mtkweb model will be saved to ${export_dir}/model.mtkweb
and all computed process data to ${export_dir}/process_data.json
Running the example
Application needs 6 following input arguments to run:
Usage: MTKConverter -i <import_file> -p <process> -e <export_folder> where:
<import_file> -- filename of a model, that will be imported
<process> -- what analysis should be performed on model
<export_folder> -- export folder name where an output will be saved
Possible process parameter values
Parameter value | Process | Description |
machining_milling | CNC Machining | Milling feature recognition and dfm analysis |
machining_turning | Lathe+Milling feature recognition and dfm analysis |
sheet_metal | Sheet Metal | Feature recognition, unfolding and dfm analysis |
Example:
MTKConverter -i C:\\models\\test.step -p machining_milling -e C:\\models\\test
Implementation
The ModelData::ModelReader is used to import the models.
MTKConverter_ReturnCode Import (const UTF16String& theFilePath, ModelData::Model& theModel)
{
std::cout << "Importing " << theFilePath << "..." << std::flush;
ModelData::ModelReader aReader;
if (!aReader.Read (theFilePath, theModel)) {
std::cerr << std::endl << "ERROR: Failed to import " << theFilePath << ". Exiting" << std::endl;
return MTKConverter_RC_ImportError;
}
return MTKConverter_RC_OK;
}
Then Process
method was created for a model analysis with chosen by process_param_table value processor. The ModelData::Model::AssignUuids() method is used to assign persistent id's to unique parts of the model. These id's will be used to connect parts with process data saved in json file. The processor is a MTKConverter_PartProcessor
class, that can analyse all parts of the imported model. The ProcessType
method can parse a process_param_table parameter value to choose MTKConverter_PartProcessor
class, which will run relative analyzer tools. The ModelData::ModelElementUniqueVisitor
is used to traverse and retrieve only unique parts of the imported model.
MTKConverter_ReturnCode Process (const UTF16String& theProcess,
ModelData::Model& theModel,
MTKConverter_Report& theReport,
ModelData::Model& theProcessModel)
{
std::cout << "Processing " << theProcess << "..." << std::flush;
theModel.AssignUuids();
auto ApplyProcessorToModel = [&theModel, &theReport] (MTKConverter_PartProcessor& theProcessor) {
ModelData::ModelElementUniqueVisitor aVisitor (theProcessor);
theModel.Accept (aVisitor);
for (const auto& i : theProcessor.myData) {
theReport.AddData (i);
}
};
auto aProcessType = ProcessType (theProcess);
switch (aProcessType) {
case MTKConverter_PT_MachiningMilling:
{
ApplyProcessorToModel (aProcessor);
break;
}
case MTKConverter_PT_MachiningTurning:
{
ApplyProcessorToModel (aProcessor);
break;
}
case MTKConverter_PT_Molding:
{
MTKConverter_MoldingProcessor aProcessor;
ApplyProcessorToModel (aProcessor);
break;
}
case MTKConverter_PT_SheetMetal:
{
theProcessModel.SetName (theModel.Name() + "_unfolded");
MTKConverter_SheetMetalProcessor aProcessor (theProcessModel);
ApplyProcessorToModel (aProcessor);
break;
}
case MTKConverter_PT_Undefined:
default : return MTKConverter_RC_InvalidArgument;
}
return MTKConverter_RC_OK;
}
@ Machining_OT_Milling
Milling operation type.
Definition Machining_OperationType.hxx:29
@ Machining_OT_LatheMilling
Lathe + Milling operation type.
Definition Machining_OperationType.hxx:30
Before we dive into how the model is processed with MTKConverter_PartProcessor
class after the ApplyProcessorToModel was ran, the inheritance hierarchy should be observed.
-
First, the MTKConverter_PartProcessor
class, which inherits from ModelData::ModelElementVoidVisitor , was created with the overridden void operator()(const ModelData::Part& thePart)
method to traverse the model and collect each ModelData::Part . Then, ModelData::Solid and ModelData::Shell are extracted using ModelData::ModelElementVoidVisitor . The ProcessSolid
, ProcessShell
is developed to analyze the certain shapes of ModelData::Part . Additionally, some analyses require post-processing, which is handled by the PostPartProcess
method. These four methods will be described in detail later.
void MTKConverter_PartProcessor::operator() (const ModelData::Part& thePart)
{
const auto& aBodies = thePart.Bodies();
for (const auto& aBody : aBodies) {
ModelData::ShapeIterator aShapeIt (aBody);
while (aShapeIt.HasNext()) {
const auto& aShape = aShapeIt.Next();
if (aShape.Type() == ModelData::ShapeType::Solid) {
ProcessSolid (thePart, ModelData::Solid::Cast (aShape));
} else if (aShape.Type() == ModelData::ShapeType::Shell) {
ProcessShell (thePart, ModelData::Shell::Cast (aShape));
}
}
}
PostPartProcess (thePart);
}
MTKConverter_VoidPartProcessor
was inherited from MTKConverter_PartProcessor
at first with empty defined methods for processing, because not all processor can analyse Shell, Mesh and requires postprocessing. Then for each process different class, inherited from MTKConverter_VoidPartProcessor
, was developed. The table below demonstrates what classes were created for each process and which methods were overriden.
Processor classes
Process | Class | ProcessSolid | ProcessShell | ProcessMesh | PostPartProcess |
CNC Machining | MTKConverter_MachiningProcessor | + | - | - | - |
Sheet Metal | MTKConverter_SheetMetalProcessor | + | - | + |
-
Let's take the MTKConverter_SheetMetalProcessor
as example, because it supports almost all methods of MTKConverter_PartProcessor
. It uses SheetMetal_Analyzer for shape processing. In constructor both supported tools (SheetMetal_FeatureRecognizer, SheetMetal_Unfolder) were added to SheetMetal_Analyzer. Analyzer classes can be used to run all tools together, however it should be mentioned, that such tools allow separated calls. The example of such separate call for SheetMetal_Unfolder can be found here.
myUnfoldedModel (theUnfoldedModel)
{
myAnalyzer.AddTool (SheetMetal_FeatureRecognizer());
myAnalyzer.AddTool (SheetMetal_Unfolder());
}
Provides MTK data model.
Definition Model.hxx:40
The Perform
method of SheetMetal_Analyzer will be called to run analysis with added tools for Solid and Shell respectively.
void MTKConverter_SheetMetalProcessor::ProcessSolid (
{
auto anSMData = myAnalyzer.Perform (theSolid);
UpdateProcessData (anSMData, thePart);
}
void MTKConverter_SheetMetalProcessor::ProcessShell (
{
auto anSMData = myAnalyzer.Perform (theShell);
UpdateProcessData (anSMData, thePart);
}
Defines a leaf node in the scene graph hiearchy.
Definition Part.hxx:34
Defines a connected set of faces.
Definition Shell.hxx:32
Defines a topological solid.
Definition Solid.hxx:32
After the analysis was done the PostPartProcess
method will be run.
void MTKConverter_SheetMetalProcessor::PostPartProcess (const ModelData::Part& thePart)
{
if (!myCurrentUnfoldedBody) {
return;
}
ModelData::Part anUnfoldedPart (thePart.Name());
anUnfoldedPart.SetUuid (thePart.Uuid());
anUnfoldedPart.AddBody (myCurrentUnfoldedBody);
myUnfoldedModel.AddRoot (anUnfoldedPart);
myCurrentUnfoldedBody = ModelData::SheetBody();
}
Finally, after the processing, the model will be converted to *.mtkweb format.
MTKConverter_ReturnCode Export (const UTF16String& theFolderPath,
const ModelData::Model& theModel,
const MTKConverter_Report& theReport,
const ModelData::Model& theProcessModel)
{
std::cout << "Exporting " << theFolderPath << "..." << std::flush;
UTF16String aModelPath = theFolderPath + "/" + theModel.Name() + ".mtkweb" + "/scenegraph.mtkweb";
if (!theModel.Save (aModelPath, ModelData::Model::FileFormatType::MTKWEB)) {
std::cerr << std::endl << "ERROR: Failed to export " << aModelPath << ". Exiting" << std::endl;
return MTKConverter_RC_ExportError;
}
return MTKConverter_RC_OK;
}
An unfolded representation, if the SheetMetal process was performed also will be converted to *.mtkweb format and saved.
if (!theProcessModel.IsEmpty()) {
UTF16String aProcessModelPath = theFolderPath + "/" + theProcessModel.Name() + ".mtkweb" + "/scenegraph.mtkweb";
if (!theProcessModel.Save (aProcessModelPath, ModelData::Model::FileFormatType::MTKWEB)) {
std::cerr << std::endl << "ERROR: Failed to export " << aProcessModelPath << ". Exiting" << std::endl;
return MTKConverter_RC_ExportError;
}
}
A result of processing will be saved to a json file with the custom MTKConverter_Report
class. However, other premade solutions can be used too.
UTF16String aJsonPath = theFolderPath + "/process_data.json";
if (!theReport.WriteToJSON (aJsonPath)) {
std::cerr << std::endl << "ERROR: Failed to create JSON file " << aJsonPath << ". Exiting" << std::endl;
return MTKConverter_RC_ExportError;
}
return MTKConverter_RC_OK;
}
Most of MTKConverter_Report
methods were designed to generate a json file itself, but there are several distinct methods:
-
WriteFeatures
run sorts and generates a text representation of features.
-
SortFeatures
sorts and groups features to make an output compact. The MTKBase_FeatureComparator
was used for comparison of features by types and parameters. An order of features is preserved with a map.
-
GetShapesId
gets the id of a Shape for a BRepRepresentation. A relative Shape of converted model can be found with the Id.
-
Methods like AddShapeFeature
/ AddDrillingIssue
/ etc. make a text representation of features with their relative parameters.
All features have the same to text export pattern, therefore only the example for Machining_Countersink was present.
else if (aFeature.IsOfType<Machining_Countersink>()) {
const auto& aCountersink = static_cast<const Machining_Countersink&> (aFeature);
auto aFeatureData = WriteFeatureDataToString (
"Radius", "mm", aCountersink.Radius(),
"Depth", "mm", aCountersink.Depth(),
"Axis", "", aCountersink.Axis().Axis(),
theShapeIdVector);
theManager.AddGroupData ("Countersink(s)", "(55, 125, 34)", aFeatureData, theCount);
}
Example output
Below are outputs for different processes.
Machining Milling
The ./examples/models/Fresamento_CAM1_v3.stp
model can be used to run machining_milling
process.
Output
Original Model
|
{
"version": "1",
"parts": [
{
"partId": "e31092b7-fc4e-4c02-8021-c0bbbcd21bfa",
"process": "CNC Machining Milling",
"featureRecognition": {
"name": "Feature Recognition",
"totalFeatureCount": "51",
"featureGroups": [
{
"name": "Concave Fillet Edge Milling Face(s)",
"color": "(129, 127, 38)",
"totalGroupFeatureCount": "14",
"subGroupCount": "1",
"subGroups": [
{
"parametersCount": "1",
"parameters": [
{
"name": "Radius",
"units": "mm",
"value": "5.00"
}
],
"featureCount": "14",
"features": [
{
"shapeIDCount": "1",
"shapeIDs": [
{
"id": "555"
}
]
},
...
{
"shapeIDCount": "1",
"shapeIDs": [
{
"id": "669"
}
]
}
]
}
]
},
...
"dfm": {
"name": "Design for Manufacturing",
"totalFeatureCount": "23",
"featureGroups": [
{
"name": "Deep Hole(s)",
"color": "(0, 35, 245)",
"totalGroupFeatureCount": "4",
"subGroupCount": "1",
"subGroups": [
{
"parametersCount": "2",
"parameters": [
{
"name": "Expected Maximum Depth",
"units": "mm",
"value": "29.84"
},
{
"name": "Actual Depth",
"units": "mm",
"value": "31.32"
}
],
"featureCount": "4",
"features": [
{
"shapeIDCount": "2",
"shapeIDs": [
{
"id": "435"
},
{
"id": "423"
}
]
},
{
"shapeIDCount": "2",
"shapeIDs": [
{
"id": "450"
},
{
"id": "438"
}
]
},
{
"shapeIDCount": "2",
"shapeIDs": [
{
"id": "465"
},
{
"id": "453"
}
]
},
{
"shapeIDCount": "2",
"shapeIDs": [
{
"id": "480"
},
{
"id": "468"
}
]
}
]
}
]
},
...
Machining Turning
The ./examples/models/senthi.step
model can be used to run machining_turning
process. The processing result has the same structure as for a Machining milling, thus it was omitted.
Output
Original Model
|
Sheet Metal
The ./examples/models/Part2.stp
is suitable to run SheetMetal process. The first part of a json file is the same as in Machining milling and turning, but it also contains the infromation about unfolding analysis.
Output
Original Model
|
Unfolded Model
|
...
"featureRecognitionUnfolded": {
"name": "Feature Recognition",
"parametersCount": "3",
"parameters": [
{
"name": "Length",
"units": "mm",
"value": "220.71"
},
{
"name": "Width",
"units": "mm",
"value": "167.84"
},
{
"name": "Thickness",
"units": "mm",
"value": "1.00"
}
]
},
"dfmUnfolded": {
"name": "Design for Manufacturing",
"totalFeatureCount": "1",
"featureGroups": [
{
"name": "Non Standard Sheet Size(s)",
"color": "(0, 0, 0)",
"totalGroupFeatureCount": "1",
"subGroupCount": "1",
"subGroups": [
{
"parametersCount": "2",
"parameters": [
{
"name": "Nearest Standard Size (LxW)",
"units": "mm",
"value": "300.00 x 200.00"
},
{
"name": "Actual Size (LxW)",
"units": "mm",
"value": "220.71 x 167.84"
}
],
"featureCount": "1",
"features": [
{
"shapeIDCount": "0",
"shapeIDs": []
}
]
}
]
}
]
}
}
]
}
Files