Hide menu
Loading...
Searching...
No Matches
cadex::Geom::SurfaceOfRevolution Class Reference

Defines a surface of revolution. More...

#include <cadex/Geom/SurfaceOfRevolution.hxx>

Inheritance diagram for cadex::Geom::SurfaceOfRevolution:
cadex::Geom::SweptSurface cadex::Geom::Surface cadex::Geom::Geometry cadex::BaseObject

Public Member Functions

 SurfaceOfRevolution ()
 Constructor.
 
 SurfaceOfRevolution (const Geom::Curve &theBasisCurve, const Geom::Point &theLocation, const Geom::Direction &theDirection)
 Constructor.
 
Geom::Point Location () const
 Returns an origin point of a rotation axis.
 
- Public Member Functions inherited from cadex::Geom::SweptSurface
 SweptSurface ()
 Constructor.
 
Geom::Curve BasisCurve () const
 
Geom::Direction Direction () const
 
- Public Member Functions inherited from cadex::Geom::Surface
 Surface ()
 Constructor.
 
SurfaceType Type () const
 Returns a surface type.
 
Geom::Continuity Continuity () const
 Returns a continuity type of the surface.
 
Point Value (double theParameterU, double theParameterV) const
 Evaluates a point on the surface.
 
Direction Normal (double theParameterU, double theParameterV) const
 Returns the normal direction theNormal at the current point.
 
bool IsUPeriodic () const
 Returns true if the surface is periodic in U direction.
 
bool IsVPeriodic () const
 Returns true if the surface is periodic in V direction.
 
double UMin () const
 Returns a minimum parameter of a definition domain in U direction.
 
double UMax () const
 Returns a maximum parameter of a definition domain in U direction.
 
double VMin () const
 Returns a minimum parameter of a definition domain in V direction.
 
double VMax () const
 Returns a maximum parameter of a definition domain in V direction.
 
void Domain (double &theUMin, double &theUMax, double &theVMin, double &theVMax) const
 Returns a definition domain.
 
bool IsTrimmed () const
 Returns whether surface is trimmed or not.
 
void SetTrim (double theUFirst, double theULast, double theVFirst, double theVLast)
 Trims surface with [theUFirst, theULast] x [theVFirst, theVLast] section.
 
void Transform (const Transformation &theTransformation)
 Applies transformation matrix to this object.
 
Surface Transformed (const Transformation &theTransformation) const
 Returns a copy this object after applying transformation.
 
void D0 (double theParameterU, double theParameterV, Point &theValue) const
 Returns the point theValue of parameter theU, theV on the surface.
 
void D1 (double theParameterU, double theParameterV, Point &theValue, Vector &theD1U, Vector &theD1V) const
 Returns the point theValue and the first derivatives in the directions U theD1U and V theD1V at this point.
 
void D2 (double theParameterU, double theParameterV, Point &theValue, Vector &theD1U, Vector &theD1V, Vector &theD2U, Vector &theD2V, Vector &theD2UV) const
 Returns the point theValue, the first and the second derivatives in the directions U and V at this point.
 
bool DN (double theParameterU, double theParameterV, size_t theDerivativeOrder, Geom::Point &theValue, std::vector< Geom::Vector > &theD) const
 
void Curvature (double theParameterU, double theParameterV, Direction &thePrincipalMaxDirection, Direction &thePrincipalMinDirection) const
 Returns the max and min principal curvature directions multiplied by max and min value of curvature respectively.
 
void Curvature (double theParameterU, double theParameterV, Direction &thePrincipalMaxDirection, Direction &thePrincipalMinDirection, double &theMaxCurvature, double &theMinCurvature) const
 Returns the max and min principal curvature directions and their values.
 
void Mirror (const Point &thePoint)
 
void Mirror (const Axis1d &theAxis)
 
void Mirror (const Axis3d &theAxis)
 
Surface Mirrored (const Point &theRef) const
 
Surface Mirrored (const Axis1d &theAxis) const
 
Surface Mirrored (const Axis3d &theAxis) const
 
void Rotate (const Axis1d &theAxis, double theAngle)
 
Surface Rotated (const Axis1d &theAxis, double theAngle) const
 
void Translate (const Vector &theVector)
 
Surface Translated (const Vector &theVector) const
 
void Scale (const Point &thePoint, double theScale)
 
Surface Scaled (const Point &thePoint, double theScale) const
 
- Public Member Functions inherited from cadex::BaseObject
size_t Id () const
 Return unique identifier of public object.
 
internal::BaseObjectImpl * Impl () const
 
bool IsNull () const
 
 operator bool () const
 
template<typename T >
bool IsOfType () const
 
template<typename T >
T * Impl () const
 Reserved for internal use.
 

Static Public Member Functions

static bool CompareType (const BaseObject &theObject)
 
- Static Public Member Functions inherited from cadex::Geom::SweptSurface
static bool CompareType (const BaseObject &theObject)
 
- Static Public Member Functions inherited from cadex::Geom::Surface
static bool CompareType (const BaseObject &theObject)
 
- Static Public Member Functions inherited from cadex::Geom::Geometry
static bool CompareType (const BaseObject &theObject)
 

Additional Inherited Members

- Public Types inherited from cadex::BaseObject
typedef std::shared_ptr< internal::BaseObjectImpl > ImplType
 
- Protected Member Functions inherited from cadex::Geom::SweptSurface
 SweptSurface (const ImplType &theImpl)
 
- Protected Member Functions inherited from cadex::Geom::Surface
 Surface (const ImplType &theImpl)
 
- Protected Member Functions inherited from cadex::Geom::Geometry
 Geometry (const ImplType &theImpl)
 
- Protected Member Functions inherited from cadex::BaseObject
 BaseObject (const ImplType &theImpl)
 

Detailed Description

Defines a surface of revolution.

Surface of revolution is defined by a basis curve and a rotation axis. The following image depicts an example of a surface of revolution:

Surface of revolution

A surface of revolution is parametrized as follows: \(\mathbf{S}(u,v) = \mathbf{Z}(v) + \cos(u)(\mathbf{B}(v) - \mathbf{Z}(v)) + \mathbf{D}\times\sin(u)(\mathbf{B}(v) - \mathbf{Z}(v))\), where:

  • \(\mathbf{P}\) is an origin point specifying rotation axis,
  • \(\mathbf{D}\) is unit vector specifying rotation axis,
  • \(\mathbf{B}(v)\) is a basis curve,
  • \(\mathbf{Z}(v)\) is a projection of a point on the basis curve onto a rotation axis, \(\mathbf{Z}(v) = \mathbf{P} + ((\mathbf{B}(v) - \mathbf{P})\cdot\mathbf{D})\mathbf{D}\),
  • \(u\) belongs to \([0, 2\pi]\),
  • \(v\) belongs to a basis curve definition domain.

U-parameter is an angle of rotation around the axis counterclockwise, and V-parameter is s a parameter along the curve \(\mathbf{B}(v)\). Thus, U-isolines are correspond to curve \(\mathbf{B}(v)\) rotated around the rotation axis and V-isolines are circles perpendicular to rotation axis with radius equal to distance from the axis to a point on the basis curve at parameter V. U-isoline at \(u=0\) is the basis curve itself.

The curve \(\mathbf{B}(v)\) should be planar although this is not enforced. It should not cross the rotation axis, except possibly at the end points.

Surface or revolution is periodic along U with period \(2\pi\). It is V-periodic if the basis curve is periodic itself.

If a face lies on a full range of U its boundary wire will contain two seam-edges at parameters UMin() and UMax(). Likewise, if the surface is V-periodic the wire will contain two seam-edges at parameters VMin() and VMax(). If the basis curve has end point(s) lying on a rotation axis then the wire will contain degenerated edge(s) at respective point(s).

Constructor & Destructor Documentation

◆ SurfaceOfRevolution()

cadex::Geom::SurfaceOfRevolution::SurfaceOfRevolution ( const Geom::Curve & theBasisCurve,
const Geom::Point & theLocation,
const Geom::Direction & theDirection )

Constructor.

Creates a surface of revolution from a basis curve and a rotation axis.

Member Function Documentation

◆ Location()

Geom::Point cadex::Geom::SurfaceOfRevolution::Location ( ) const

Returns an origin point of a rotation axis.

Returns the value specified in the constructor.